Abstract

Wettability between the molten Sn and AlCoCrCuxFeNi (x = 0, 0.5, 1, 1.5) high-entropy alloy (HEA) substrates was studied by sessile drop technique at 823 K. The final contact angle decreased with the increase of Cu content in the AlCoCrFeNi HEA. Additional Cu could not only change surface structure of AlCoCrFeNi HEA but also effect on the interfacial reaction between the molten Sn and AlCoCrCuxFeNi HEA. Moreover, with the increasing concentration of Cu, the diffusion of Sn atom along the Cu-rich solid-solution phase in AlCoCrCuxFeNi HEA was much more intense. Accordingly, the enhancement of wetting may be attributed to change of the primary interface reaction product and diffusion of Sn atom along the Cu-rich solid-solution phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.