Abstract

Advancing contact angle (θ) measurements were carried out for aqueous solutions of four cationic surfactants, hexadecanol glycidyl ether ammonium chloride (C(16)PC), guerbet alcohol hexadecyl glycidyl ether ammonium chloride (C(16)GPC), hexadecanol polyoxyethylene(3) glycidyl ether ammonium chloride (C(16)(EO)(3)PC), and guerbet alcohol hexadecyl polyoxyethylene(3) glycidyl ether ammonium chloride (C(16)G(EO)(3)PC), on the quartz surface using the sessile drop analysis. The influences of surfactant type and bulk concentration on contact angle were expounded, and the changes in adhesional tension and adhesion work were discussed. The contact angle increases up to a maximum with the increasing concentration for all cationic surfactants. Surfactants with branched chain have more hydrophobic group density on the quartz surface, which results in higher values of maxima in contact angle curves. When ethylene oxide groups CH(2)CH(2)O were incorporated in the hydrophobic group, the decrease in contact angle maximum was observed for C(16)(EO)(3)PC and C(16)G(EO)(3)PC. Moreover, an increase in quartz-water interfacial free energy (γ(SL)) has been observed due to the adsorption of four cationic surfactants. The four cationic surfactants can form a monolayer with alignment structure on the quartz surface through electrostatic interaction and then form the bilayer with increasing bulk concentration. In contrast with literature, the maximal contact angles may not necessarily correspond to the beginning of the formation of bilayer for cationic surfactants at the quartz-water interface. Moreover, the concentrations corresponding to maximal contact angles for C(16)PC and C(16)(EO)(3)PC were much lower than their CMC. The contact angle passes through a maximum at a concentration obviously higher than CMC for C(16)G(EO)(3)PC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.