Abstract

The nanostructure-based surface texturing can be used to improve the materials wettability. Regarding oil–water separation, designing a surface with special wettability is as an important approach to improve the separation efficiency. Herein, a ZnO nanostructure was prepared by a two-step process for sol–gel process and crystal growth from the liquid phase to achieve both a superhydrophobicity in oil and a superoleophobic property in water. It is found that the filter material with nanostructures presented an excellent wettability. ZnO-coated stainless-steel metal fiber felt had a static underwater oil contact angle of 151.4° ± 0.8° and an underoil water contact angle of 152.7° ± 0.6°. Furthermore, to achieve water/oil separation, the emulsified impurities in both water-in-oil and oil-in-water emulsion were effectively intercepted. Our filter materials with a small pore (~5 μm diameter) could separate diverse water-in-oil and oil-in-water emulsions with a high efficiency (>98%). Finally, the efficacy of filtering quantity on separation performance was also investigated. Our preliminary results showed that the filtration flux decreased with the collection of emulsified impurities. However, the filtration flux could restore after cleaning and drying, suggesting the recyclable nature of our method. Our nanostructured filter material is a promising candidate for both water-in-oil and oil-in-water separation in industry.

Highlights

  • The surfaces with special wettability were achieved by ZnO nanostructures, which could improve oil/water separation efficiency

  • ZnO nanostructures were fabricated by a two-step process for the sol-gel process and crystal growth from the liquid phase to achieve both a superhydrophobicity in oil and a superoleophobic property in water

  • Our study demonstrated an excellent wettability of nanostructured stainless-steel fiber felt

Read more

Summary

Introduction

There has been increasing interest in the materials with unique functions due to their promising application in various fields such as self-cleaning, antimicrobial, anti-icing, biocompatible materials, or oil transportation [4,5,6,7,8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call