Abstract

This investigation adopts a new perspective on wettability alteration as a function of temperature. Colloidal (i.e., DLVO) theory and calculations are used to interpret results from laboratory-scale displacements. Water imbibition tests were conducted with 9 reservoir cores from a diatomaceous reservoir. Permeability and porosity of cores varied from 0.2 to 0.7 md and 46% to 65%, respectively. The experiments included spontaneous counter-current water imbibition followed by forced co-current water imbibition to residual oil saturation. The fluids were 34° API crude oil and synthetic formation brine. All tests were isothermal and temperatures ranged from 45 to 230 °C at pressures sufficient to maintain liquid water. The experimental results show that an increase in temperature results in: (1) a substantial increase in imbibition rate and extent of oil recovery, (2) a slight reduction in residual oil saturation, and (3) a significant shift in the Amott wettability index from intermediate and weakly water wet to strongly water wet. DLVO calculations illustrate detachment of fines from pore surfaces at high temperature. Fines detachment is a mechanism for altering wettability. Release of fines coated with oil exposes clean water-wet pore surfaces. Further calculations indicate the water–oil contact angle decreases as temperature increases indicating a systematic increase in water wettability consistent with experimental measurements of the Amott index.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call