Abstract

Wetlands are important centers of biodiversity. Coastal wetlands are subject to anthropogenic threats that can lead to biodiversity loss and consequent negative effects on nature conservation. We investigated relationships between wetland vegetation and habitat conditions in a coastal Nature Reserve in Northern Italy that has undergone seawater intrusion and eutrophication for several decades. The wetland vegetation in the Nature Reserve consisted of nine communities of hygrophytic and helophytic vegetation and five communities of waterplant vegetation. The hygrophytic and helophytic communities were arranged according to a salinity gradient, from salt-free habitats to strongly saline habitats. The saline habitats had high nutrient levels, due to the influx of nitrate-rich saltwater from an adjacent lagoon. The waterplant communities were all typical of freshwater habitats. Water-table depth and concentration of dissolved nutrients in the water were the main factors structuring waterplant vegetation. The main driver of future changes in the wetland vegetation of the Nature Reserve is the ongoing increase in salinity levels which may enhance expansion of halophilic species and communities, thus outcompeting locally rare freshwater species. If nutrient, especially nitrate, load further increases in the next future, this may exert negative effects on wetland species and communities preferring nutrient-poor habitats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.