Abstract

Nanofibrillated cellulose (NFC) treated with cationic starch was evaluated as a bonding system to permit lower degrees of refining and lower apparent density of high-mass handsheets made from bleached kraft pulp. Mixed pulp (70% hardwood, 30% softwood) was formed into sheets with the optional addition of 5% by dry mass of NFC. The default addition of NFC was compared with a system in which the NFC had been pretreated either with cationic starch (at various levels) or optionally followed by colloidal silica. Comparative tests also were carried out with separate addition of cationic starch to the main furnish. Unrefined fibers (514 mL CSF) were compared with low-refined (473 mL CSF) and high-refined (283 mL CSF) pulp mixtures. The NFC that had been pretreated with cationic starch at a high level was especially effective at boosting the tensile strength and stiffness of sheets prepared from pulp that had been refined at a low level, thus achieving improved strength at relatively low apparent density (high bulk) of the handsheets. The results support a strategy, for applicable grades of paper, of using cationic starchpretreated NFC in place of refining energy applied to the main fiber furnish. It was further established that colloidal silica can be employed as a further pretreatment of the cationic starch–treated NFC as a means of promoting dewatering in the combined system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.