Abstract

Porphyrins are large organic molecules that are interesting for different applications, such as photovoltaic cells, gas sensors, or in catalysis. For many of these applications, the interactions between adsorbed molecules and surfaces play a crucial role. Studies of porphyrins on surfaces typically fall into one of two groups: (1) evaporation onto well-defined single-crystal surfaces under well-controlled ultrahigh vacuum conditions or (2) more application-oriented wet chemical deposition onto less well-defined high surface area surfaces under ambient conditions. In this study, we will investigate the wet chemical deposition of 5-(monocarboxyphenyl)-10,15,20-triphenylporphyrin (MCTPP) on well-defined rutile TiO2(110) single crystals under ambient conditions. Prior to deposition, the TiO2(110) crystals were also cleaned wet-chemically under ambient conditions, meaning none of the preparation steps were done in ultrahigh vacuum. However, after each preparation step, the surfaces were characterized in ultrahigh vacuum with X-ray photoelectron spectroscopy (XPS) and the result was compared with porphyrin layers prepared in ultrahigh vacuum (UHV) by evaporation. The differences of both preparations when exposed to zinc ion solutions will also be discussed.

Highlights

  • Porphyrins are large organic macrocycles, which play a crucial role in many important processes in nature [1,2]

  • TiO2procedure and after subjecting thesurvey crystalspectra to the wet chemical cleaning described in the and after subjecting the crystal to the wet chemical cleaning procedure described in the experimental section above

  • We presented a method to clean rutile TiO2 (110) crystals and deposit molecules from solution, without the need of ultrahigh vacuum

Read more

Summary

Introduction

Porphyrins are large organic macrocycles, which play a crucial role in many important processes in nature [1,2]. These colorful molecules, sometimes referred to as the “pigments of life” [3], are the functional building blocks in hemoglobin and myoglobin, where they transport and store oxygen in mammalian cells [4], in chlorophyll, where they absorb sun light [5], and in vitamin B12 , where they play an important role for the production of red blood cells and the function of the nervous system [6] The reason for their broad range of functionality is their great tunability: by incorporating different metal centers in the nitrogen pocket, and by changing the side groups of the molecule, it is possible to tailor porphyrin derivatives with specific electronic, optical, and chemical properties [7,8,9].

Results and Discussion
All concentrations given as atomicand
ML MCTPP
When increasing thethe annealing temperature to 1220
Porphyrin Deposition
Porphyrin
Porphyrin Metalation
Ultrahigh-Vacuum-Prepared Crystals
Chemicals
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.