Abstract

We analyse the morphology and sedimentology of 25 dirty snow avalanche deposits in the French Alps. The deposits typically have either a snow‐ball structure or a massive structure with sliding planes. The snow balls show a longitudinal and a vertical sorting that reflects a sieve effect, similar to that observed in other rapid inertial granular flows. The massive type results from snow compaction when the avalanche is channelled by a gully or when it reaches the distal part of the scree. Velocity decrease and compaction limit the deformation to a zone at the base of the snow mass and cause the formation of distinctive sliding planes. These appear as smooth recrystallised surfaces due to local melt from frictional heating. The flow can be assimilated to a frictional granular flow. No systematic variation of size and shape of the rock debris has been observed along the profiles in both types of deposit. The distribution of rock debris and its fabric suggest that the clasts are transported passively and do not undergo any sorting during displacement. Snow melt after avalanching causes a redistribution of rock debris particularly when the snow thickness is important. This redistribution does not generate new sedimentological characteristics such as enhanced sorting or fabric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.