Abstract

A phase-transited, nondisintegrating, controlled release, asymmetric membrane capsular system for poorly water-soluble model drug flurbiprofen was developed and evaluated both in vitro and in vivo for osmotic and controlled release of the drug. Asymmetric membrane capsules (AMCs) were prepared using fabricated glass mold pins through wet phase inversion process. Effect of varying osmotic pressure of the dissolution medium on drug release was studied. Membrane characterization by scanning electron microscopy showed an outer dense region with less pores and an inner porous region for the prepared asymmetric membrane. In vitro release studies for all the prepared formulations were carried out (n = 6). Statistical test was applied for in vitro drug release at p > .05. Predicted in vivo concentration from in vitro release data closely matched the minimum effective concentration (in vivo) level achieved by the drug from its release through phase-transited AMC in rabbits for the first hour. The drug release was found to be independent of the pH but dependent on the osmotic pressure of the dissolution medium. In vivo pharmacokinetic studies showed level A correlation (R2 > .99) with 42.84% relative bioavailability compared to immediate release tablet of flurbiprofen. Excellent correlation achieved suggested that the in vivo performance of the AMCs could be accurately predicted from their in vitro release profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.