Abstract
Mechanosynthesis of calcium phosphates can be performed under wet or dry conditions. In most papers and patents, grinding under wet conditions was selected. So far, only a few papers were devoted to dry mechanosynthesis of calcium phosphates. To understand why wet mechanosynthesis was preferred, the influence of water addition on the kinetics of the mechanochemical reaction of dicalcium phosphate dihydrate with calcium oxide was investigated. The DCPD disappearance rate constant k and the final reaction time t f were determined in each case and correlated with the water content present in the slurry. Results showed that the addition water (i) slowed down the reaction rate and (ii) increased the powder contamination by mill material (hard porcelain) due to ball and vial erosion; and that (iii) wet milling did not generate the expected products, in contrast to dry grinding, because porcelain induced hydroxyapatite decomposition with the formation of β-tricalcium phosphate and silicon-stabilized tricalcium phosphate. Consequently, dry mechanosynthesis appears preferable to wet milling in the preparation of calcium phosphates of biological interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.