Abstract
Mechanisms of locomotion in microscopic systems are of great interest not only for technological applications but also for the sake of understanding, and potentially harnessing, processes far from thermal equilibrium. Downscaling is a particular challenge and has led to a number of interesting concepts, including thermal ratchet systems and asymmetric swimmers. Here we present a granular ratchet system employing a particularly robust mechanism that can be implemented in various settings. The system consists of wetted spheres of different sizes that adhere to each other, and are subject to a symmetric oscillating, zero average external force field. An inherent asymmetry in the mutual force network leads to force rectification and hence to locomotion. We present a simple model that accounts for the observed behaviour, underscores its robustness and suggests a potential scalability of the concept.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.