Abstract
Based on a conductance-vortex meter dual-modality system, a novel wet gas flow measurement method is proposed, which combines a vortex meter with disturbance wave frequency. A negative relationship between the vortex signal quality and the disturbance wave frequency is found, on which basis a new segmented fast Fourier transform–continuous wavelet transform vortex frequency extraction method is proposed. Uniform exponential equations are derived for meter over-reading, taking into account the liquid-phase Reynolds and gas-phase Weber numbers, the disturbance wave Strouhal number, density ratio, and the liquid-phase Reynolds number. Finally, a Newton–Armijo-based wet gas metering model is developed by combining these two correlation equations. The percentage errors (PEs) of the gas flow in wet gas are within ±1.0% error bands with uncertainty of 0.56%. The full-scale PEs of liquid flow are within ±10% error bands with uncertainty of 4.71%. The disturbance wave frequency is used to correct the meter over-reading. As no liquid film thickness calibration is needed, the proposed method has low requirements on the conductivity of the medium and hence the application scope of media could be expanded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.