Abstract
The mechanical durability of our hydrocarbon polymer electrolyte membrane, poly(sulfophenylene quinquephenylene) (SPP-QP) or polyphenylene ionomer, was evaluated in wet/dry cycle tests in fuel cells according to the US-DOE protocol, where the effect of gas diffusion layers (hard or soft GDL) was investigated. The membrane exhibited mechanical failure with the hard GDL and H2 crossover (permeation through the membrane) jumping from 0.01% to ca. 2% after 4,000 cycles. Post-test analyses indicated that the edge of the membrane under the gasket was the most damaged, where the dimensional change upon humidification/dehumidification was restricted. Use of the soft GDL significantly improved the wet/dry cycle durability of the membrane with no practical changes in the H2 crossover, even after 30,000 cycles, due to the strong adhesion of the GDL to the catalyst layers. The mechanical durability of the SPP-QP membrane was better than that of our previous aromatic-based ionomer membrane containing ether and ketone groups in the main chain. The loss of molecular weight and the sulfonic acid groups was rather minor for the SPP-QP membrane, indicating chemical robustness of the membrane under the severe wet/dry cycle conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.