Abstract

The main atmospheric sink for submicron aerosols is wet removal. Lead 210, the radioactive decay product of 222Rn, attaches immediately after being formed to submicron particles. Here we compare the effects of three different wet‐scavenging schemes used in global aerosol simulations on the 210Pb aerosol distribution using an off‐line, size‐resolved, global atmospheric transport model. We highlight the merits and shortcomings of each scavenging scheme at reproducing available measurements, which include concentrations in surface air and deposition, as well as vertical profiles observed over North America and western and central North Pacific. We show that model‐measurement comparison of total deposition does not allow to distinguish between scavenging schemes because compensation effects can hide the differences in their respective scavenging efficiencies. Differences in scavenging parameterization affect the aerosol vertical distribution to a much greater extent than the surface concentration. Zonally averaged concentrations at different altitudes derived from the model vary by more than a factor of 3 according to the scavenging formulation, and only one scheme enables us to reproduce reliably the individual profiles observed. This study shows that ground measurements alone are insufficient to validate a global aerosol transport model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.