Abstract

Drop test experiments have been performed with a FRP sandwich panel instrumented with a network of 16 fibre optic (FO) Bragg strain sensors, together with conventional electrical strain gauges for control and verification. The drop tests simulate slamming loads on the wet deck of a surface effect ship (SES). The objectives were to show the possibility of using a network of FO sensors to monitor strain during a slamming impact, and to test out a technique for signal processing. The strain measurements provided both peak strain data and served as a base for frequency analysis. The results showed that the FO strain sensors performed satisfactorily and were in general agreement with the conventional strain gauges used. The FO interrogation system was, however, not designed with sufficiently large dynamic range for the most extreme drop sequences. The peak strain in the panel was found to increase almost proportionally with the drop velocity, or drop height, and the wet fundamental frequency increased with increasing drop angle. Furthermore, the frequency decreased with increasing drop velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.