Abstract
Endowing materials surface with cell-adhesive properties is a common strategy in biomaterial research and tissue engineering. This is particularly interesting for already approved polymers that have a long standing use in medicine because these materials are well characterized and legal issues associated with the introduction of newly synthesized polymers may be avoided. Polytetrafluoroethylene (PTFE) is one of the most frequently employed materials for the manufacturing of vascular grafts but the polymer lacks cell adhesion promoting features. Endothelialization, i.e., complete coverage of the grafts inner surface with a confluent layer of endothelial cells is regarded key to optimal performance, mainly by reducing thrombogenicity of the artificial interface. This study investigates the growth of endothelial cells on peptide-modified PTFE and compares these results to those obtained on unmodified substrate. Coupling with the endothelial cell adhesive peptide Arg-Glu-Asp-Val (REDV) is performed via activation of the fluorin-containing polymer using the reagent sodium naphthalenide, followed by subsequent conjugation steps. Cell culture is accomplished using Human Umbilical Vein Endothelial Cells (HUVECs) and excellent cellular growth on peptide-immobilized material is demonstrated over a two-week period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.