Abstract

Aiming at the production of HPGe diodes for γ-ray detection, surface passivation of the pristine Germanium surface is pursued by treatment of freshly etched, highly reactive Ge (100) surface by different chemicals, to obtain chemisorbed species with sufficient insulating properties for allowing high voltage application (up to 1100 V) with low leakage currents (lower than 30 pA). (100) surface termination of Ge crystal with hydride, methoxide, and sulphide is carried out by wet chemical treatments using suitable reactants. The chemical composition of the newly formed monolayers is investigated with regards to the nature of chemical bonding with Ge atop atoms. To this aim Fourier Transform Infrared Spectrometry (FTIR) and X-ray Photoelectron Spectroscopy (XPS) were used; the performance as dielectric layer of each native Ge compound/complex is measured directly from I–V measurements of a HPGe diode. Atomic stability of each surface layer is monitored detecting structural changes after air exposure by XPS and FTIR spectroscopies and by relevant leakage current variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call