Abstract
We demonstrate that wet-chemical surface bromination is an effective and a simple etching method for Ge surface oxide removal, providing excellent reoxidation resistance. Oxide removal and halide passivation for n-type Ge (100) were investigated using time-resolved photoluminescence and X-ray photoemission spectroscopy (XPS). In contrast to HCl, HBr treated Ge surfaces show a strong decrease in minority carrier lifetime, pointing to a surface state spectrum modification. The results from XPS using in situ sample preparation confirm that HBr effectively removes GeO2 and suboxides, providing an air stable surface. Isopropyl alcohol rinsing after Br passivation maintains the chemical surface composition and the electronic structure. In contrast, during H2O treatment in an Ar atmosphere, the brominated Ge surface is unstable, evidenced by emerging Ge-OH groups. The distinct observed upward shift of the surface Fermi level indicates an e- donating behavior of H2O.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.