Abstract

Catalytic wet air oxidation is a promising alternative for the treatment of phenolic waste water which cannot be treated in conventional sewage plants. Catalytic wet air oxidation of an aqueous phenol solution was conducted in a fixed bed reactor operating in trickle flow regime. Either active carbon or a commercial copper oxide supported over γ-alumina was used as catalyst. The performance of both materials was compared in terms of phenol conversion in 240 h tests. The results showed that the active carbon, without any active metal supported, gives the highest phenol conversion. The supported copper catalyst undergoes a rapid deactivation due to the dissolution of the metal active species in the acidic medium in which the reaction takes place. On the other hand, the active carbon maintains a higher activity throughout the test, although a decrease of the phenol conversion was also observed due to both the loss of active carbon by combustion and the reduction of its surface area. The phenol oxidation was proved to occur through a first order mechanism with respect to phenol. After the ten-day run, the catalytic activity of the active carbon was found to be about eight times higher than that of the commercial catalyst, also showing high selectivity to the production of carbon dioxide.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.