Abstract
Creating surfaces capable of resisting liquid-mediated adhesion is extremely difficult due to the strong capillary forces that exist between surfaces. Land snails use this to adhere to and traverse across almost any type of solid surface of any orientation (horizontal, vertical or inverted), texture (smooth, rough or granular) or wetting property (hydrophilic or hydrophobic) via a layer of mucus. However, the wetting properties that enable snails to generate strong temporary attachment and the effectiveness of this adhesive locomotion on modern super-slippy superhydrophobic surfaces are unclear. Here we report that snail adhesion overcomes a wide range of these microscale and nanoscale topographically structured non-stick surfaces. For the one surface which we found to be snail resistant, we show that the effect is correlated with the wetting response of the surface to a weak surfactant. Our results elucidate some critical wetting factors for the design of anti-adhesive and bio-adhesion resistant surfaces.
Highlights
Snails adhere to surfaces by coating them with a thin (10– 20 mm) layer of mucus [1,2,3], which is a complex mixture of polysaccharides and proteins [4]
To propel themselves over the mucus they use its non-linear properties to create pedal waves in a process known as adhesive locomotion [1,2,3,5,6]
The mucus snails’ use allows them to adhere strongly and isolates them from the surface. This allows them to climb at any angle to the vertical, but does limit their size. Because their foot is attached at all times the danger of falling is much lower than with other methods of locomotion and they are able to attach to a greater variety of surfaces including the low energy non-adhesive polytetrafluoroethylene (PTFE) and the water-coated slippery hydrogels that represent the extremes of anti-adhesive non-slip materials
Summary
Snails adhere to surfaces by coating them with a thin (10– 20 mm) layer of mucus [1,2,3], which is a complex mixture of polysaccharides and proteins [4]. To characterise the wettability of the various surfaces on which snail adhesion was tested, we measured the advancing and receding contact angles of water, an oil (hexadecane), and an anionic surfactant (sodium dodecylsulfate) at various concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.