Abstract
Abstract In an attempt to understand the dynamics of the intertropical convergence zone (ITCZ), this study explores the extent to which the ITCZ is causally related to zonally propagating synoptic-scale disturbances. The ITCZ, measured by its mean convection, is represented by mean outgoing longwave radiation (OLR). Synoptic-scale disturbances, measured by their deep convective signals, are represented by the spectral power of the OLR that is significantly above its red-noise background. Time-mean spatial distributions as well as annual and interannual variability of the ITCZ are compared with those of synoptic-scale disturbances, which are dominated by westward-propagating signals. In general, they match each other well in their mean distributions and annual cycles. But, in detail, discrepancies between the two fields exist, some of them substantial. The maximum disturbance activity tends to be located at the polar side of the ITCZ. The seasonal cycles of the two share many similarities, but the variatio...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.