Abstract

The equatorial westerly wind bursts (WWBs) play an important role in modulating and predicting the El Niño-Southern Oscillation (ENSO). In this study, the ability of the Community Atmospheric Model version 4 (CAM4) and the Community Climate System Model version 4 (CCSM4) in simulating WWBs is systematically evaluated. Many characteristics of WWBs, including their longitude distributions, durations, zonal extensions, variabilities at seasonal, intraseasonal, and interannual timescales, as well as their relations with the Madden–Julian Oscillation (MJO) and ENSO, are discussed. Generally speaking, these characteristics of WWBs can be successfully reproduced by CAM4, owning to the improvement of the deep convection in the model. In CCSM4, significant bias such as the lack of the equatorial Pacific WWBs in boreal spring season and the weak modulation by a strong MJO are found. Our findings confirm the fact that the WWBs are greatly modulated by the surface temperature. It’s also suggested that improving the air-sea coupling in CCSM4 may improve model performance in simulating WWBs, and may further improve the predictability of ENSO in the coupled model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.