Abstract

Recent advances in statistical correlations between strong earthquakes and several non-seismic phenomena have opened the possibility of formulating warnings within days or even hours. The retrieved correlations have been discovered for those ionospheric physical observations which lasted a long time and realized using the same instruments, including multi-satellite recordings. One of those regarded the electron burst phenomena detected by NOAA, for which the conditional probability of a seismic event was calculated. Then an earthquake probability greater than its frequency was assigned when a satellite realized such a phenomenological observation. This approach refers to the correlations obtained between high-energy electrons detected using the NOAA POES and strong Indonesian and Philippine earthquakes. It is reformulated here to realize a test of earthquake forecasting. The fundamental step is obtained by using a unique electron L-shell interval of 1.21 ≤ L ≤ 1.31, which decouples the electron parameters from the earthquake parameters. Then, the optimized correlation was recalculated to be 1.5–3.5 h early, between electron bursts and an increased number of seismic events with M ≥ 6, therein improving the significance too. Moreover, this methodology is reconnected to the frequency theory, and to Molchan’s error diagram, by the probability gain, where a comparison among the significances of various methods is given. The previously proposed physical link between the crust and the ionosphere through magnetic interaction, presumably operating 4–6 h before strong earthquakes, is examined quantitatively on the basis of recent magnetic pulse measurements. Consequently, the probability gain of earthquake forecasting is hypothetically calculated for both the dependent measurements of electron bursts using NOAA satellites and possible ground-based magnetic pulse detection. This method of combining probability gains for earthquake forecasting is general enough that it can be applied to any pair of observables from space and the ground.

Highlights

  • Different phenomena, possibly connected with seismic activity, have been reported in recent years by many authors researching anomalies, both geoscientific (Rikitake, 1976; Rikitake, 1987) and macroscopic (Rikitake, 2003)

  • A precursor volume VP containing the alarm events must be defined, which is generally different from VT; VP is the volume of the area where electron burst (EB) detection using NOAA satellites occurs, multiplied by the time of EB observations

  • The NOAA satellites go into the detection area west of the South Atlantic Anomaly intermittently, further reducing the total time of observations

Read more

Summary

Introduction

Possibly connected with seismic activity, have been reported in recent years by many authors researching anomalies, both geoscientific (Rikitake, 1976; Rikitake, 1987) and macroscopic (Rikitake, 2003). The limited number of observatories on the ground and their punctual observations, even when operative (Console, 2001), reduce the number of considered strong EQs, making it too small to calculate a statistical correlation over several decades. When moderate magnitude EQs are considered, a statistical correlation is currently calculated for ULF geomagnetic fluctuations at ground stations (Schekotov et al, 2006; Hattori et al, 2013; Han et al, 2014; Han et al, 2017). A review of several correlation increases corresponding to 3 days between ELF Q-bursts and the Kanchakta EQs has been reported with the possible associated physical models (Hayakawa et al, 2019). A method to predict the time, epicenter, and magnitude of such events has been suggested (Schekotov et al, 2019) based on the works cited above

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.