Abstract

In North America, the geographic distribution, ecology, and vectorial capacity of a diverse assemblage of mosquito species belonging to the genus Culex determine patterns of West Nile virus transmission and disease risk. East of the Mississippi River, mostly ornithophagic Culex pipiens L. complex mosquitoes drive intense enzootic transmission with relatively small numbers of human cases. Westward, the presence of highly competent Culex tarsalis (Coquillett) under arid climate and hot summers defines the regions with the highest human risk. West Nile virus human risk distribution is not uniform geographically or temporally within all regions. Notable geographic 'hotspots' persist with occasional severe outbreaks. Despite two decades of comprehensive research, several questions remain unresolved, such as the role of non-Culex bridge vectors, which are not involved in the enzootic cycle, but may be involved in virus transmission to humans. The absence of bridge vectors also may help to explain the frequent lack of West Nile virus 'spillover' into human populations despite very intense enzootic amplification in the eastern United States. This article examines vectorial capacity and the eco-epidemiology of West Nile virus mosquito vectors in four geographic regions of North America and presents some of the unresolved questions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.