Abstract
Mosquitoes are involved in the transmission and maintenance of several viral diseases with significant health impact. Biosurveillance efforts have also revealed insect-specific viruses, observed to cocirculate with pathogenic strains. This report describes the findings of flavivirus and rhabdovirus screening, performed in eastern Thrace and Aegean region of Anatolia during 2016, including and expanding on locations with previously-documented virus activity. A mosquito cohort of 1545 individuals comprising 14 species were collected and screened in 108 pools via generic and specific amplification and direct metagenomics by next generation sequencing. Seven mosquito pools (6.4%) were positive in the flavivirus screening. West Nile virus lineage 1 clade 1a sequences were characterized in a pool Culex pipiens sensu lato specimens, providing the initial virus detection in Aegean region following 2010 outbreak. In an Anopheles maculipennis sensu lato pool, sequences closely-related to Anopheles flaviviruses were obtained, with similarities to several African and Australian strains of this new insect-specific flavivirus clade. In pools comprising Uranotaenia unguiculata (n=3), Cx. pipiens s.l. (n=1) and Aedes caspius (n=1) mosquitoes, sequences of a novel flavivirus, distantly-related to Flavivirus AV2011, identified previously in Spain and Turkey, were characterized. Moreover, DNA forms of the novel flavivirus were detected in two Ur. unguiculata pools. These sequences were highly-similar to the sequences amplified from viral RNA, with undisrupted reading frames, suggest the occurrence of viral DNA forms in natural conditions within mosquito hosts. Rhabdovirus screening revealed sequences of a recently-described novel virus, named the Merida-like virus Turkey (MERDLVT) in 5 Cx. pipiens s.l. pools (4.6%). Partial L and N gene sequences of MERDLVT were well-conserved among strains, with evidence for geographical clustering in phylogenetic analyses. Metagenomics provided the near-full genomic sequence in a specimen, revealing an identical genome organization and limited divergence from the prototype MERDLVT isolate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.