Abstract

Werner syndrome (WS) is a rare genetic disorder characterized by genomic instability caused by defects in the WRN gene encoding a member of the human RecQ helicase family. RecQ helicases are involved in several DNA metabolic pathways including homologous recombination (HR) processes during repair of stalled replication forks. Following introduction of interstrand DNA crosslinks (ICL), WRN relocated from nucleoli to arrested replication forks in the nucleoplasm where it interacted with the HR protein RAD52. In this study, we use fluorescence resonance energy transfer (FRET) and immune-precipitation experiments to demonstrate that WRN participates in a multiprotein complex including RAD51, RAD54, RAD54B and ATR in cells where replication has been arrested by ICL. We verify the WRN-RAD51 and WRN-RAD54B direct interaction in vitro. Our data support a role for WRN also in the recombination step of ICL repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.