Abstract

BackgroundSystemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs. So far, no Western medicine treatment can completely inhibit or reverse the progress of SSc, while at the same time, our previous series of studies have shown that the treatment of SSc by the Wenyang Huazhuo Tongluo formula (WYHZTL), a Chinese herbal decoction, shows a delightful prospect. The aim of this study is to further investigate the mechanism of anti-fibrosis of WYHZTL formula in SSc mouse model.MethodsThe Bleomycin-induced SSc mouse model was treated with saline (BLM), high-dosage of WYHZTL formula (WYHZTL-H), medium-dosage of WYHZTL formula (WYHZTL-M), low-dosage of WYHZTL formula (WYHZTL-L) and XAV-939, a small molecule inhibitor of Wnt/β-catenin signaling pathway, by the intragastric administration and intraperitoneal injection, respectively. The mRNA and protein levels of Wnt/β-catenin signaling pathway associated genes, fibrosis markers and histopathology were detected by reverse transcription-quantitative polymerase chain reaction, Western blotting and hematoxylin/eosin-staining. The levels of Wnt1, CTGF and DKK1 protein in serum were detected by enzyme-linked immunosorbent assay.ResultsCompared with BLM group, the WYHZTL formula and XAV-939 could significantly inhibit the thickness of the skin tissue of the SSc mouse model. The mRNA expression levels of GSK3β and DKK1 in the WYHZTL formula and XAV-939-treated group were significantly higher than those in the BLM group, while Wnt1, β-catenin, TCF4, cyclin D1, survivin, VEGF, CTGF, FN1, collagen I/III were decreased. Compared with BLM group, the protein expression levels of GSK3β and DKK1 in the WYHZTL formula and XAV-939-treated group were upregulated, while Wnt1, β-catenin, cyclin D1, survivin, CTGF, FN1, collagen I/III were downregulated. WYHZTL formula and XAV-939 could inhibit expression of Wnt1 and CTGF, but promoted DKK1 in serum. Furthermore, WYHZTL-H seemed more effective than WYHZTL-M and/or XAV-939 on regulating Wnt1, β-catenin, TCF4, GSK3β, DKK1, cyclin D1, survivin, VEGF, CTGF, FN1 and collagen I/III.ConclusionThis present study demonstrates that WYHZTL formula has anti-fibrosis effect in Bleomycin-induced SSc mouse model in a dosage-dependent manner, and the molecular mechanism may be related to the inhibition of Wnt/β-catenin signaling pathway.

Highlights

  • Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs

  • Wenyang Huazhuo Tongluo formula (WYHZTL) formula could ameliorate skin fibrosis in Bleomycin‐induced SSc mouse model To confirm whether the Bleomycin-induced SSc mouse model was successfully constructed in this study, and detected the effect of WYHZTL formula and XAV-939 on skin fibrosis in mouse models, the skin of each mouse model group was dissected using paraffin sections, and the skin pathological changes of the mouse model were observed by hematoxylin and eosin stained (HE) staining

  • For skin thickness, skinfold thickness, and breaking tension, Bleomycin group (BLM) + WYHZTL-H group showed more reduction than BLM + WYHZTLL, BLM + WYHZTL-M, and BLM + XAV-939 groups (P < 0.05) (Fig. 1b–d). These results confirmed that WYHZTL formula or XAV-939 could significantly improve the thickening degree of the skin tissue, in addition, more importantly, the effect of WYHZTL formula was in a dosage-dependent manner, and WYHZTL-H had more advantage than XAV-939

Read more

Summary

Introduction

Systemic sclerosis (SSc) is an autoimmune disease characterized by fibrosis of the skin and internal organs. No Western medicine treatment can completely inhibit or reverse the progress of SSc, while at the same time, our previous series of studies have shown that the treatment of SSc by the Wenyang Huazhuo Tongluo formula (WYHZTL), a Chinese herbal decoction, shows a delightful prospect. On the other hand, when the Wnt protein binds to the receptors of Frizzled family on the cell membrane, the Wnt/β-catenin signaling pathway is activated, causing the accumulation of β-catenin in the cytoplasm to promote the translocation of β-catenin to the nucleus to form transcriptional activation complex with TCF/LEF family proteins, followed by the upregulation of a series of target genes, such as c-myc and cyclin D1 and so on [9, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call