Abstract

A general Wentzel–Kramers–Brillouin (WKB) theory of multidimensional tunneling is formulated and an illuminating physical picture of the effects of multidimensionality is provided. Two basic problems are solved: (i) Maslov’s semiclassical wave function in the classically accessible region is connected to the wave function in the classically inaccessible region and (ii) the latter is propagated into the deep tunneling region. It is found that there exist two distinct types of tunneling: pure tunneling and mixed tunneling. The former is the usual one in which the tunneling path can be defined by a certain classical trajectory on the inverted potential and its associated action is pure imaginary. In the latter case, no tunneling path can be defined and the Huygens-type wave propagation should be carried out. In this case, tunneling is always accompanied by classical motion in the transversal direction and the associated action is complex. A general procedure is presented for the evaluation of energy splitting ΔE in the double well. Moreover, under the locally separable linear approximation, a simple and convenient formula for ΔE is derived and is confirmed to work well by comparison with the exact numerical calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call