Abstract

The effect of the 3-dimentional (3D) blade on the turbine characteristics of Wells turbines for wave energy conversion has been investigated numerically by a quasi-steady analysis under unsteady flow conditions in this study in order to improve the peak mean efficiency characteristics. The aim of use of the 3D blade is to prevent flow separation on the suction surface near the tip. The chord length is constant in the radius and the blade profile changes gradually from the mean radius to the tip. The proposed blade profiles in the study are NACA0015 from the hub to mean radius and NACA0025 at the tip. The performance of the Wells turbine with 3D blades has been compared with those of the original Wells turbine, i.e., the turbine with 2-dimentional blades. As a result, it was concluded that although the peak mean efficiency of a Wells turbine can be improved by the use of the proposed 3D blade, its blade does not overcome the stall characteristic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.