Abstract
The goal of this paper is to study well-posedness to strictly hyperbolic Cauchyproblems with non-Lipschitz coefficients with low regularity with respect to timeand smooth dependence with respect to space variables. The non-Lipschitz conditionis described by the behaviour of the time-derivative of coefficients. This leads to a classification of oscillations, which has a strong influence on the loss of derivatives. To study well-posednesswe propose a refined regularizing technique. Two steps of diagonalizationprocedure basing on suitable zones of the phase spaceand corresponding nonstandard symbol classes allow to applya transformation corresponding to the effect of loss of derivatives.Finally, the application of sharp Garding's inequality allows to derive a suitable energy estimate. From this estimatewe conclude a result about C∞well-posedness of the Cauchy problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.