Abstract
We study the Muskat problem describing the spatially periodic motion of two fluids with equal viscosities under the effect of gravity in a vertical unbounded two-dimensional geometry. We first prove that the classical formulation of the problem is equivalent to a nonlocal and nonlinear evolution equation expressed in terms of singular integrals and having only the interface between the fluids as unknown. Secondly, we show that this evolution equation has a quasilinear structure, which is at a formal level not obvious, and we also disclose the parabolic character of the equation. Exploiting these aspects, we establish the local well-posedness of the problem for arbitrary initial data in Hs(S), with s∈(3/2,2), determine a new criterion for the global existence of solutions, and uncover a parabolic smoothing property. Besides, we prove that the zero steady-state solution is exponentially stable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.