Abstract

In this paper we mainly study the Cauchy problem of a four-component Novikov system. We first show the local well-posedness of the system in Besov spaces $$B^{s+1}_{p,r}\times B^{s+1}_{p,r}\times B^s_{p,r} \times B^s_{p,r}$$ with $$p,r\in [1,\infty ],~s>\max \{\frac{1}{p},\frac{1}{2}\}$$ by using the Littlewood–Paley theory and transport equations theory. Then, by virtue of logarithmic interpolation inequalities and the Osgood lemma, we prove the local well-posedness of the system in the critical Besov space $$B^{\frac{3}{2}}_{2,1}\times B^{\frac{3}{2}}_{2,1} \times B^{\frac{1}{2}}_{2,1}\times B^{\frac{1}{2}}_{2,1}$$ . Next, we establish two blow-up criteria for strong solutions to the system by using the structure of the system. Moreover, we investigate the persistence property for strong solutions to the system. Finally, we verify that the system possesses a special class of peakon solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.