Abstract

AbstractIn this paper, an asymptotic analysis of the (non‐conserved) Penrose–Fife phase field system for two vanishing time relaxation parameters ε and δ is developed, in analogy with the similar analyses for the phase field model proposed by G. Caginalp (Arch. Rational Mech. Anal. 1986; 92:205–245), which were carried out by Rossi and Stoth (Adv. Math. Sci. Appl. 2003; 13:249–271; Quart. Appl. Math. 1995; 53:695–700).Although formally the singular limits for ε ↓ 0 and for ε and δ ↓ 0 are, respectively, the viscous Cahn–Hilliard equation and the Cahn–Hilliard equation, it turns out that the Penrose–Fife system is indeed a bad approximation for these equations. Therefore, we consider an alternative approximating phase field system, which could be viewed as a generalization of the classical Penrose–Fife phase field system, featuring a double non‐linearity given by two maximal monotone graphs. A well‐posedness result is proved for such a system, and it is shown that the solutions converge to the unique solution of the viscous Cahn–Hilliard equation as ε ↓ 0, and of the Cahn–Hilliard equation as ε ↓ 0 and δ ↓ 0. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.