Abstract
Boolean grammars [A. Okhotin, Information and Computation 194 (2004) 19-48] are a promising extension of context-free grammars that supports conjunction and negation. In this paper we give a novel semantics for boolean grammars which applies to all such grammars, independently of their syntax. The key idea of our proposal comes from the area of negation in logic programming, and in particular from the so-called well-founded semantics which is widely accepted in this area to be the “correct” approach to negation. We show that for every boolean grammar there exists a distinguished (three-valued) language which is a model of the grammar and at the same time the least fixed point of an operator associated with the grammar. Every boolean grammar can be transformed into an equivalent (under the new semantics) grammar in normal form. Based on this normal form, we propose an ${\mathcal{O}(n^3)}$ algorithm for parsing that applies to any such normalized boolean grammar. In summary, the main contribution of this paper is to provide a semantics which applies to all boolean grammars while at the same time retaining the complexity of parsing associated with this type of grammars.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.