Abstract

Well-defined polyacrylonitrile with a higher number-average molecular weight ( M ¯ n ) up to 200,000 and a lower polydispersity index (PDI, 1.7–2.0) was firstly obtained via reversible addition–fragmentation chain transfer (RAFT) process. This was achieved by selecting a stable, easy way to prepare disulfide compound intermediates including bis(thiobenzoyl) disulfide (BTBDS) and bis(thiophenylacetoyl) disulfide (BTPADS) to react with azobis(isobutyronitrile) to directly synthesize RAFT agents in situ. The polymerization of acrylonitrile (AN) displays the characteristics of controlled/living radical polymerization as evidenced by pseudo first-order kinetics of polymerization, linear evolution of molecular weight with increasing monomer conversion, and narrow PDIs. The polymerization rate and the efficiency for producing RAFT agent of BTPADS system are obviously higher than those of BTBDS system, whereas the control of the latter over the polymerization is superior to that of the former. 1H NMR analysis has confirmed the dithioester chain-end functionality of the resultant polymer. The RAFT copolymerizations of AN and the comonomers including methyl acrylate, itaconic acid, methyl methacrylate, n-butyl acrylate, 2-hydroxyethyl acrylate, and acrylamide were also successfully carried out using the same polymerization system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call