Abstract

AbstractWell‐defined D‐glucose‐containing glycopolymers, poly(3‐O‐methacryloyl‐1,2 : 5,6‐di‐O‐isopropylidene‐D‐glucofuranose) (PMAIpGlc), and diblock copolymers of PMAIpGlc with poly(1,1‐dihydroperfluorooctyl methacrylate) (PFOMA) were synthesized by living anionic polymerization in THF at −78 °C with 1,1‐diphenylhexyllithium in the presence of lithium chloride. The resulting polymers were found to possess predictable molecular weights and very narrow molecular weight distributions (MWD, Mw/Mn ≤ 1.16). Removal of the acetal protective groups from the protected glycopolymer block copolymer was carried out using 90% trifluoroacetic acid at room temperature, yielding a hydrophilic block copolymer with pendant glucose moieties. Both protected (lipophilic/CO2‐philic) and deprotected (hydrophilic/CO2‐philic) fluorocopolymers were proved to be CO2 amphiphiles. Their solubility in CO2 was heavily influenced by the amphiphilic structure, such as the copolymer compositions and the polarities of sugar block. Light‐scattering studies showed that, after removal of the protective groups, the deprotected block copolymer formed aggregate structures in liquid CO2 with an average micellar size of 27 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3841–3849, 2001

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.