Abstract

Summary The need to increase productivity and to reduce drilling formation damage favors the use of underbalanced drilling technology. The main idea is to drill with equivalent circulating densities (ECD) that are less than the formation pore pressure and to avoid contact between the drilling fluid and the formation. In highly depleted reservoirs, pore pressures can be very low. Therefore, extremely low-density fluids, such as foams, are used to achieve circulating densities lower than the pore pressure. In such cases, the induced modification of the in-situ stresses has to be supported mainly by the rock, with little contribution from the drilling fluid pressure. In that sense, the application of underbalanced drilling depends on the mechanical stability of the drilled formation, among other factors. In general, poorly consolidated, depleted formations are not suited for that technology. This paper presents the wellbore stability simulation performed to establish the feasibility of using underbalanced drilling in highly depleted reservoirs in western Venezuela. The in-situ stress field and the mechanical properties of the formation were obtained. Pore pressure as low as 800 psi at 5,500 ft (2.7 lb/gal equivalent fluid density) was measured. The finite difference method and an elastoplastic constitutive model was used to obtain the new stress, deformation, and pore pressure distribution. The undrained condition (immediately after the wellbore is drilled) as well as the drained condition were analyzed. The analysis showed that horizontal wells could be drilled in an underbalanced condition with low instability risk. Following the recommendations, four horizontal wells were drilled in underbalanced conditions. Values as low as 2.0 lb/gal ECD were used to drill the wells, and no wellbore instability problems were reported. Production tests showed an enormous increase in the well productivity index in comparison with conventional overbalanced drilling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call