Abstract

Irregular wellbore collapse phenomena and accidents frequently occur during drilling operations in Longmaxi shale gas reservoir. Considering shale formation with natural cross beddings and fractures, we propose a multi-weakness plane instead of a single weakness plane failure model. Shale samples obtained from the Lower Silurian Longmaxi Strata of Sichuan Basin are investigated based on characterization and analysis of mineralogy, pore structure, sliding failure condition, and rock mechanics to study the impact of porous flow on jointed shale masses. Results show that Longmaxi gas shale is a brittle and fracture-prone material with poor hydrating capacity and extremely low permeability in rock matrices. Reduction of rock strength under porous flow may contribute to changes in intensity parameters of the weakness planes. Therefore, considering the failure of multi-weakness planes under porous flow, we present a wellbore stability model for shale gas reservoir. Two types of weakness plane distribution patterns are examined to discuss the effect of the occurrence, numbers, and water saturation of weakness planes. The results demonstrate that the number of weakness planes, difference in weakness plane occurrence, and diverse water saturation levels significantly affect wellbore stability during drilling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.