Abstract

Optimization of drilling fluid parameters such as mud weight, salt concentration, and temperature is essential to alleviate instability problems during drilling through shale sections. The selection of suitable mud parameters can benefit from analyses that consider significant instability processes involved in shale-drilling–fluid interactions. This paper describes the development of analytical and numerical method for describing shale deformation. Appropriate and optimum mud pressure in which the highest consistency happens is calculated with analytical and numerical methods. It was found that, the predicted mud pressures obtained from two methods are approximately equal. The stress condition is considered non-hydrostatic. From the analytical and extensive numerical simulation it was concluded that with applying any mud pressure the well shape changes from spherical to elliptical. As the selection of the optimum mud pressure is based on the less movement and maintaining the well shape constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.