Abstract
Abstract Wellbore instability is a major preoccupation during drilling operations and is highly dependent of the physiochemical features of the drilling mud. The hydrophilic clays are used in making drilling mud as they provide extensive viscosity and gel strength, and other rheological properties important for optimum drilling mud performance. However, the segregation of the suspended particles of the once optimum mud to create mud cake against the wellbore formation leads to phases imbalance in the mud system, degrading the physiochemical characteristics of the now worn-out mud after several cycling in and out of the well. Although it is crucial to consider the influence of bottomhole conditions in mud rheological alteration, it is necessary to highlight the direct correlation of most mud physiochemical features with the swelling index of the mud. Therefore, optimization of drilling mud is still up to date mostly about swelling control of the mud thus solid-liquid balancing. Overtime, research papers addressing drilling mud enhancement transitioned from mechanical means such as Loss Circulation Materials (LCM) to chemical additives including polymers which as economically profitable and have swelling abilities. Polyvinyl alcohol one most desirable polymers for future drilling fluid designing as it has proved to influence mud rheology and cake filtration positively. Therefore, this study is an attempt to assess the impact of polyvinyl alcohol on wellbore isolation of a water-based drilling mud. The experiment included two types of Polyvinyl Alcohol (PVOH): Non-ionic PVOH and Cationic PVOH. Each PVOH was added to a set of 3 samples at concentrations 0.1, 0.3, and 0.5 wt.%. An additional sample with no polymer was used as a reference sample. The samples were each subjected to 5h of static pressurized filtration at atmospheric temperature. After which Spectral analysis where performed, and Permeability estimated using Darcy's Law. The results show significant influence on Polyvinyl Alcohol on mud phases distribution. Major dehydration of samples was observed as the sample without PVOH recorded the highest filtrate production while the samples with Cationic, Non-Ionic, and Conventional PVOH had average reduction of 21%,38%, and 43% respectively. The mud cake permeability of samples drastically drops at the least concentration of PVOH with a noticeable difference in permeability despite having the same PVOH concentrations. Those differences are attributed to PVOH-specific structural compositions. This study provides evidence of Polyvinyl Alcohol being responsible for improving mud thermal stability while helping any industry applying drilling activities to expand the range of polymer types that can be used to attain the desired drilling mud for a particular formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.