Abstract

In some previous works, the authors have introduced a strategy to develop well-balanced high-order numerical methods for nonconservative hyperbolic systems in the framework of path-conservative numerical methods. The key ingredient of these methods is a well-balanced reconstruction operator, i.e. an operator that preserves the stationary solutions in some sense. A strategy has been also introduced to modify any standard reconstruction operator like MUSCL, ENO, CWENO, etc. in order to be well-balanced. In this article, the specific case of 1d systems of balance laws is addressed and difficulties are gradually introduced: the methods are presented in the simpler case in which the source term does not involve Dirac masses. Next, systems whose source term involves the derivative of discontinuous functions are considered. In this case, the notion of weak solution is discussed and the Generalized Hydrostatic Reconstruction technique is used for the treatment of singular source terms. A technique to preserve the well-balancedness of the methods in the presence of numerical integration is introduced. The strategy is applied to derive first, second and third order well-balanced methods for Burgers’ equation with a nonlinear source term and for the Euler equations with gravity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.