Abstract

This paper concerns the development of high-order accurate centred schemes for the numerical solution of one-dimensional hyperbolic systems containing non-conservative products and source terms. Combining the PRICE-T method developed in [Toro E, Siviglia A. PRICE: primitive centred schemes for hyperbolic system of equations. Int J Numer Methods Fluids 2003;42:1263–91] with the theoretical insights gained by the recently developed path-conservative schemes [Castro M, Gallardo J, Parés C. High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products applications to shallow-water systems. Math Comput 2006;75:1103–34; Parés C. Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J Numer Anal 2006;44:300–21], we propose the new PRICE-C scheme that automatically reduces to a modified conservative FORCE scheme if the underlying PDE system is a conservation law. The resulting first-order accurate centred method is then extended to high order of accuracy in space and time via the ADER approach together with a WENO reconstruction technique. The well-balanced properties of the PRICE-C method are investigated for the shallow water equations. Finally, we apply the new scheme to the shallow water equations with fix bottom topography and with variable bottom solving an additional sediment transport equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.