Abstract
Summary The large number of geological realizations and well trajectory parameters make field development optimization under geological uncertainty a time-consuming task. A novel deep learning-based surrogate model with a novel well trajectory parametrization technique is proposed in this study to optimize the trajectory of wells under geological uncertainty. The proposed model is a deep neural network with ConvLSTM layers to extract the most salient features from highly channelized and layered reservoirs efficiently. ConvLSTM layers are used because they can extract spatiotemporal features simultaneously since layered reservoirs can be regarded as a time series of spatially distributed reservoir properties. The proposed surrogate model could predict the individual objective function with a coefficient of determination of 0.96. After verifying the validity of the surrogate model, four approaches were used to optimize well trajectories. Two of the approaches consumed all available realizations (surrogate model-based and simulation-based approaches), while the remaining two used a subset of realizations. The selection of the subset was based on the cumulative oil production (COP) and the diffusive time of flight (DTOF). Results showed that although the surrogate model used all realizations, it could provide similar results to the simulation-based optimization with only a 5% computational cost of the simulation-based approach. The novelty of this work lies in its proposal of an innovative surrogate model to improve the analysis of channelized and layered reservoirs and its introduction of a novel well trajectory optimization framework that effectively addresses the challenge of optimizing well trajectories in complex three-dimensional spaces, a problem not adequately tackled in previous works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.