Abstract

Unconventional reservoirs such as shale gas and shale oil have become an increasingly important source of energy in the USA with potential reservoirs identified worldwide. Due to the insufficient permeability of the shale reservoirs, they require efficient stimulation using multi-stage hydraulic fractures to produce gas in commercial quantities. A critical challenge in the reservoirs is performance evaluation of the fracturing and characterization of the stimulated reservoir volume (SRV) for permeability and hydraulic fracture size. Conventional well test analysis in multi-stage fractured shale reservoirs may not provide reliable results due to the extensive wellbore storage effect, fracture complexities, and heterogeneity of the low-permeability reservoir. To overcome such issues, advanced well test analysis techniques integrated with rate transient analysis can be used to reduce uncertainties associated with estimation of the reservoir and hydraulic fractures’ dynamic parameters. This paper proposes a practical methodology and workflow for characterizing the SRV parameters in multi-fractured wells in unconventional oil and gas reservoirs using well test and rate transient data analysis based on diffusivity equation solution for linear and elliptical flow regimes integrated with numerical reservoir simulation. A reservoir simulation model is built and run for a typical fractured shale reservoir to verify the reliability of the proposed simplified approach. Furthermore, multi-fractured unconventional reservoir field examples of well test analysis, reservoir simulation and history matching are presented to show how the stimulated reservoir volume can be characterized to perform a more reliable production forecast in shale oil and shale gas reservoirs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.