Abstract

Water blocking is a frequent cause for gas productivity decline in unconventional and conventional fields. It is a result of the capillary end effect near the wellbore vicinity. It creates significant formation damage and decreases gas well productivity. The alteration of the rock wettability by nanofluids is an effective way to reduce water blockage and enhance gas production. Presently, several types of surfactants and nanofluids are used in the industry for contact angle alteration. In this study, we developed an analytical model and analysed the sensitivity to several parameters. After the treatment, the porous medium in the well vicinity (or along the core) will have a stepwise constant contact angle profile. We derive analytical models for compressible steady-state two-phase linear and axi-symmetric flows, accounting for the piecewise-constant contact angle and contact-angle-dependent capillary pressure and relative permeability. The modelling reveals a complex interplay between the competing effects of compressibility, viscous and capillary forces, which influence the optimal contact angle for treatment. The optimal contact angle for treatment will depend on the initial wettability of the formation, the water cut and the capillary-viscous ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.