Abstract

In this paper, we are concerned with well-posedness of an anisotropic parabolic equation with the convection term. When some diffusion coefficients are degenerate on the boundary ∂Ω and the others are positive on Ω‾, we propose a novel partial boundary value condition to study the stability of the solutions for the anisotropic parabolic equation. A new concept, the general characteristic function of the domain Ω, is introduced and applied. The existence and stability of the solutions is established under the given partial boundary value conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.