Abstract

AbstractWe study distributed optimal control problems governed by time‐fractional parabolic equations with time dependent coefficients on metric graphs, where the fractional derivative is considered in the Caputo sense. Using the Galerkin method and compactness results, for the spatial part, and approximating the kernel of the time‐fractional Caputo derivative by a sequence of more regular kernel functions, we first prove the well‐posedness of the system. We then turn to the existence and uniqueness of solutions to the distributed optimal control problem. By means of the Lagrange multiplier method, we develop an adjoint calculus for the right Caputo derivative and derive the corresponding first order optimality system. Moreover, we propose a finite difference scheme to find the approximate solution of the state equation and the resulting optimality system on metric graphs. Finally, examples are provided on two different graphs to illustrate the performance of the proposed difference scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.