Abstract
In this article we study the class of right-invariant, fractional order Sobolev-type metrics on groups of diffeomorphisms of a compact manifold M. Our main result concerns well-posedness properties for the corresponding Euler-Arnold equations, also called the EPDiff equations, which are of importance in mathematical physics and in the field of shape analysis and template registration. Depending on the order of the metric, we will prove both local and global well-posedness results for these equations. As a result of our analysis we will also obtain new commutator estimates for elliptic pseudo-differential operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.