Abstract

We consider a class of generalized stochastic porous media equations with multiplicative Lipschitz continuous noise. These equations can be related to physical models exhibiting self-organized criticality. We show that these SPDEs have unique SVI solutions which depend continuously on the initial value. In order to formulate this notion of solution and to prove uniqueness in the case of a slowly growing nonlinearity, the arising energy functional is analyzed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.