Abstract
A system of a first order history-dependent evolutionary variational– hemivariational inequality with unilateral constraints coupled with a nonlinear ordinary differential equation in a Banach space is studied. Based on a fixed point theorem for history dependent operators, results on the well-posedness of the system are proved. Existence, uniqueness, continuous dependence of the solution on the data, and the solution regularity are established. Two applications of dynamic problems from contact mechanics illustrate the abstract results. First application is a unilateral viscoplastic frictionless contact problem which leads to a hemivariational inequality for the velocity field, and the second one deals with a viscoelastic frictional contact problem which is described by a variational inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.